Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Probabilistic spin logic (PSL) has recently been proposed as a novel computing paradigm that leverages random thermal fluctuations of interacting bodies in a system rather than deterministic switching of binary bits. A PSL circuit is an interconnected network of thermally unstable units called probabilistic bits (p-bits), whose output randomly fluctuates between bits 0 and 1. While the fluctuations generated by p-bits are thermally driven, and therefore, inherently stochastic, the output probability is tunable with an external source. Therefore, information is encoded through probabilities of various configuration of states in the network. Recent studies have shown that these systems can efficiently solve various types of combinatorial optimization problems and Bayesian inference problems that modern computers are unfit for. Previous experimental studies have demonstrated that a single magnetic tunnel junctions (MTJ) designed to be thermally unstable can operate tunable random number generator making it an ideal hardware solution for p-bits. Most proposals for designing an MTJ to operate as a p-bit involve patterning the MTJ as a circular nano-pillar to make the device thermally unstable and then use spin transfer torque (STT) as a tuning mechanism. However, the practical realization of such devices is very challenging since the fluctuation rate of these devices are very sensitive to any device variations or defects caused during fabrication. Despite this challenge, MTJs are still the most promising hardware solution for p-bits because MTJs are very unique in that they can be tuned by multiple other mechanisms such spin orbit torque, magneto-electric coupling, and voltage-controlled exchange coupling. Furthermore, multiple forces can be used simultaneously to drive stochastic switching signals in MTJs. This means there are a large number of methods to tune, or termed as bias, MTJs that can be implemented in p-bit circuits that can alleviate the current challenges of conventional STT driven p-bits. This article serves as a review of all of the different methods that have been proposed to drive random fluctuations in MTJs to operate as a probabilistic bit. Not only will we review the single-biasing mechanisms, but we will also review all the proposed dual-biasing methods, where two independent mechanisms are employed simultaneously. These dual-biasing methods have been shown to have certain advantages such as alleviating the negative effects of device variations and some biasing combinations have a unique capability called ‘two-degrees of tunability’, which increases the information capacity in the signals generated.more » « lessFree, publicly-accessible full text available October 1, 2026
- 
            Superparamagnetic tunnel junctions (sMTJs) are emerging as promising components for stochastic units in neuromorphic computing owing to their tunable random switching behavior. Conventional MTJ control methods, such as spin-transfer torque (STT) and spin–orbit torque (SOT), often require substantial power. Here, we introduce the voltage-controlled exchange coupling (VCEC) mechanism, enabling the switching between antiparallel and parallel states in sMTJs with an ultralow power consumption of only 40 nW, approximately 2 orders of magnitude lower than conventional STT-based sMTJs. This mechanism yields a sigmoid-shaped output response, making it ideally suited to neuromorphic computing applications. Furthermore, we validate the feasibility of integrating VCEC with SOT current control, offering an additional dimension for magnetic state manipulation. This work marks the first practical demonstration of the VCEC effect in sMTJs, highlighting its potential as a low-power control solution for probabilistic bits in advanced computing systems.more » « lessFree, publicly-accessible full text available June 11, 2026
- 
            The use of magnetic tunnel junction (MTJ)-based devices constitutes an important basis of modern spintronics. However, the switching layer of an MTJ is widely believed to be an unmodifiable setup, instead of a user-defined option, posing a restriction to the function of spintronic devices. In this study, we realized a reliable electrical control of the switching layer in perpendicular MTJs with 0.1 nm Ir dusting. Specifically, a voltage pulse with a higher amplitude drives the magnetization switching of the MTJ's bottom electrode, while a lower voltage amplitude switches its top electrode. We discussed the origin of this controllability and excluded the possibility of back-hopping. Given the established studies on enhancing the voltage-controlled magnetic anisotropy effect by adopting Ir, we attribute this switching behavior to the significant diffusion of Ir atoms into the top electrode, which is supported by scanning transmission electron microscopy with atomic resolution.more » « less
- 
            Recent advancement in the switching of perpendicular magnetic tunnel junctions with an electric field has been a milestone for realizing ultra-low energy memory and computing devices. To integrate with current spin-transfer torque-magnetic tunnel junction and spin–orbit torque-magnetic tunnel junction devices, the typical linear fJ/V m range voltage controlled magnetic anisotropy (VCMA) needs to be significantly enhanced with approaches that include new materials or stack engineering. A possible bidirectional and 1.1 pJ/V m VCMA effect has been predicted by using heavily electron-depleted Fe/MgO interfaces. To improve upon existing VCMA technology, we have proposed inserting high work function materials underneath the magnetic layer. This will deplete electrons from the magnetic layer biasing the gating window into the electron-depleted regime, where the pJ/V m and bidirectional VCMA effect was predicted. We have demonstrated tunable control of the Ta/Pd(x)/Ta underlayer's work function. By varying the Pd thickness (x) from 0 to 10 nm, we have observed a tunable change in the Ta layer's work function from 4.32 to 4.90 eV. To investigate the extent of the electron depletion as a function of the Pd thickness in the underlayer, we have performed DFT calculations on supercells of Ta/Pd(x)/Ta/CoFe/MgO, which demonstrate that electron depletion will not be fully screened at the CoFe/MgO interface. Gated pillar devices with Hall cross geometries were fabricated and tested to extract the anisotropy change as a function of applied gate voltage for samples with various Pd thicknesses. The electron-depleted Pd samples show three to six times VCMA improvement compared to the electron accumulated Ta control sample.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
